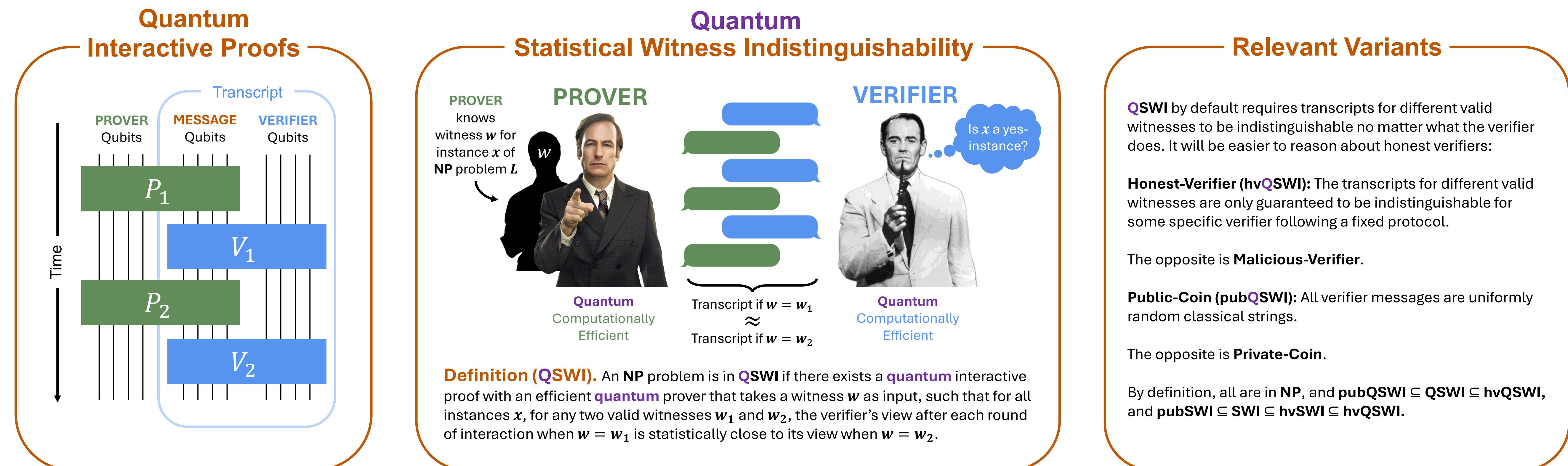


Quantum Statistical Witness Indistinguishability

Shafik Nassar (shafik@cs.utexas.edu), Ronak Ramachandran (ronakr@utexas.edu)

Department of Computer Science, The University of Texas at Austin

The University of Texas at Austin
Computer Science
College of Natural Sciences



Simple 3-Message Public-Coin Protocols Suffice

Theorem 1.1. Any problem in **hvQSWI** has a 3-message, public-coin quantum interactive proof that satisfies quantum statistical witness indistinguishability against malicious verifiers. In particular: $\text{pubQSWI} = \text{QSWI} = \text{hvQSWI}$. Moreover, the witness indistinguishability error in the resulting protocol is polynomially related to that in the original protocol.

No analogous results are known for **SWI**.

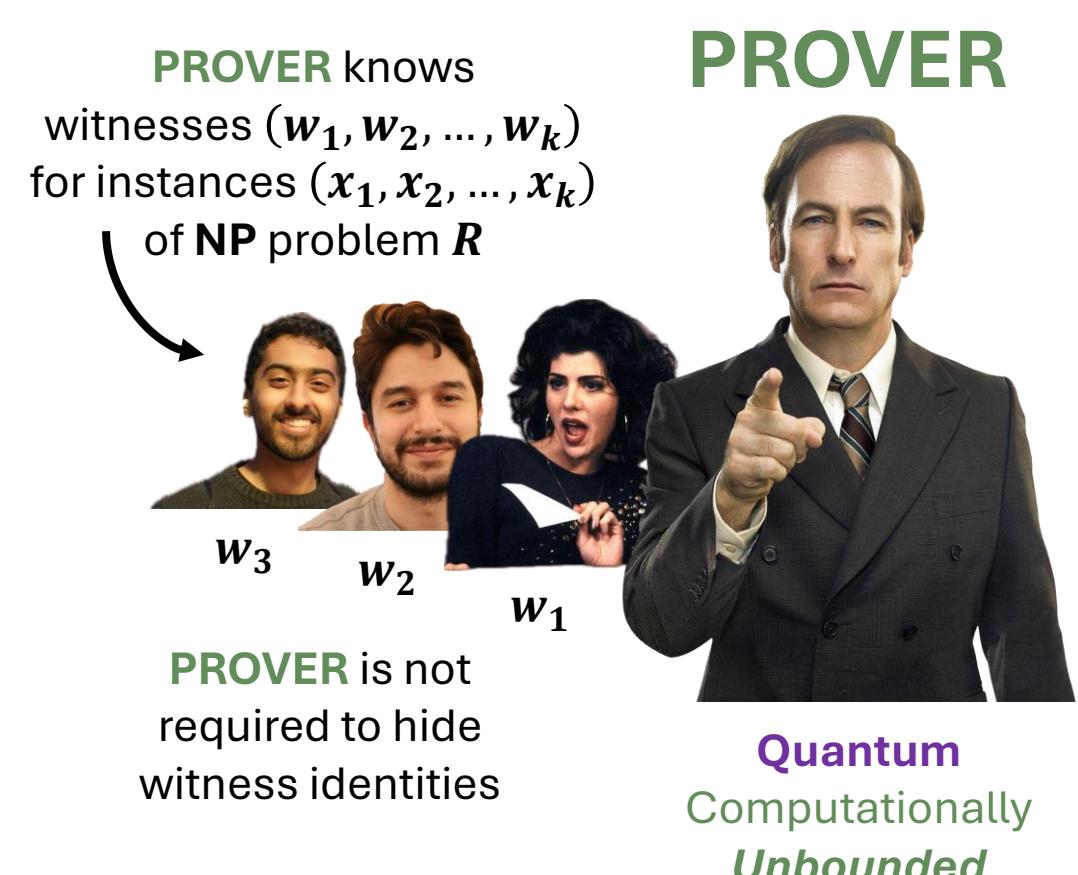
Corollary 1.2. $\text{SWI} \subseteq \text{QSWI}$

Note: Corollary 1.2 does not follow from definitions. *A priori*, malicious quantum verifiers might have had new quantum strategies for distinguishing witnesses.

Proof Sketch of Theorem 1.1.

	Initial Protocol						Final Protocol						Technique	
	Rand.	Verifier	# msgs	C	S	WI Error	Rand.	Verifier	# msgs	C	S	WI Error		
Lemma 4.1.	Private	Honest	m	$1 - \varepsilon_c$	ε_s	ε_{WI}	\rightarrow	Private	Honest	3	$1 - \frac{\varepsilon_c}{2}$	$1 - \frac{(1 - \varepsilon_s)^2}{32(M + 1)^2}$	$m\varepsilon_{\text{WI}}$	QIP = QIP(3) [Kitaev Watrous 2000]
Lemma 4.2.	Private	Honest	3	$1 - \varepsilon_c$	ε_s	ε_{WI}	\rightarrow	Private	Honest	3	$(1 - \frac{\varepsilon_c}{2})^p$	ε_s^p	$p\varepsilon_{\text{WI}}$	p parallel repetitions
Lemma 4.3.	Private	Honest	m	$2/3$	$1/3$	ε_{WI}	\rightarrow	Private	Honest	3	$1 - 2^{-p}$	2^{-p}	$\text{negl}(n)$	Sequential repetition + Lemmas 4.1 and 4.2
Lemma 4.4.	Private	Honest	3	$1 - \varepsilon_c$	ε_s	ε_{WI}	\rightarrow	Public	Honest	3	$1 - \frac{\varepsilon_c}{2}$	$\frac{1}{2} - \frac{\sqrt{\varepsilon_c}}{2}$	ε_{WI}	Verifier message can be single random bit [Marriott Watrous 2005]
Lemma 4.5.	Public	Honest	3	$1 - \varepsilon_c$	ε_s	ε_{WI}	\rightarrow	Public	Malicious	3	$1 - \varepsilon_c$	ε_s	ε_{WI}	Careful simulation
Theorem 4.6.	Private	Honest	m	$2/3$	$1/3$	ε_{WI}	\rightarrow	Public	Malicious	3	$1 - 2^{-p}$	2^{-p}	$\text{negl}(n)$	Lemmas 4.1 - 4.5

Quantum Batch Proofs Imply QSWI



Definition (Quantum Batch Proof). For any NP relation R , a quantum batch proof for R is a quantum interactive proof for the relation

$$R^{\otimes k} := \{((x_1, x_2, \dots, x_k), (w_1, w_2, \dots, w_k)) : \forall i \in [k], (x_i, w_i) \in R\}.$$

If the total communication in the interaction is a ρ fraction of the communication required for the prover to send all witnesses to the verifier, then we say the batch proof is ρ -compressing.

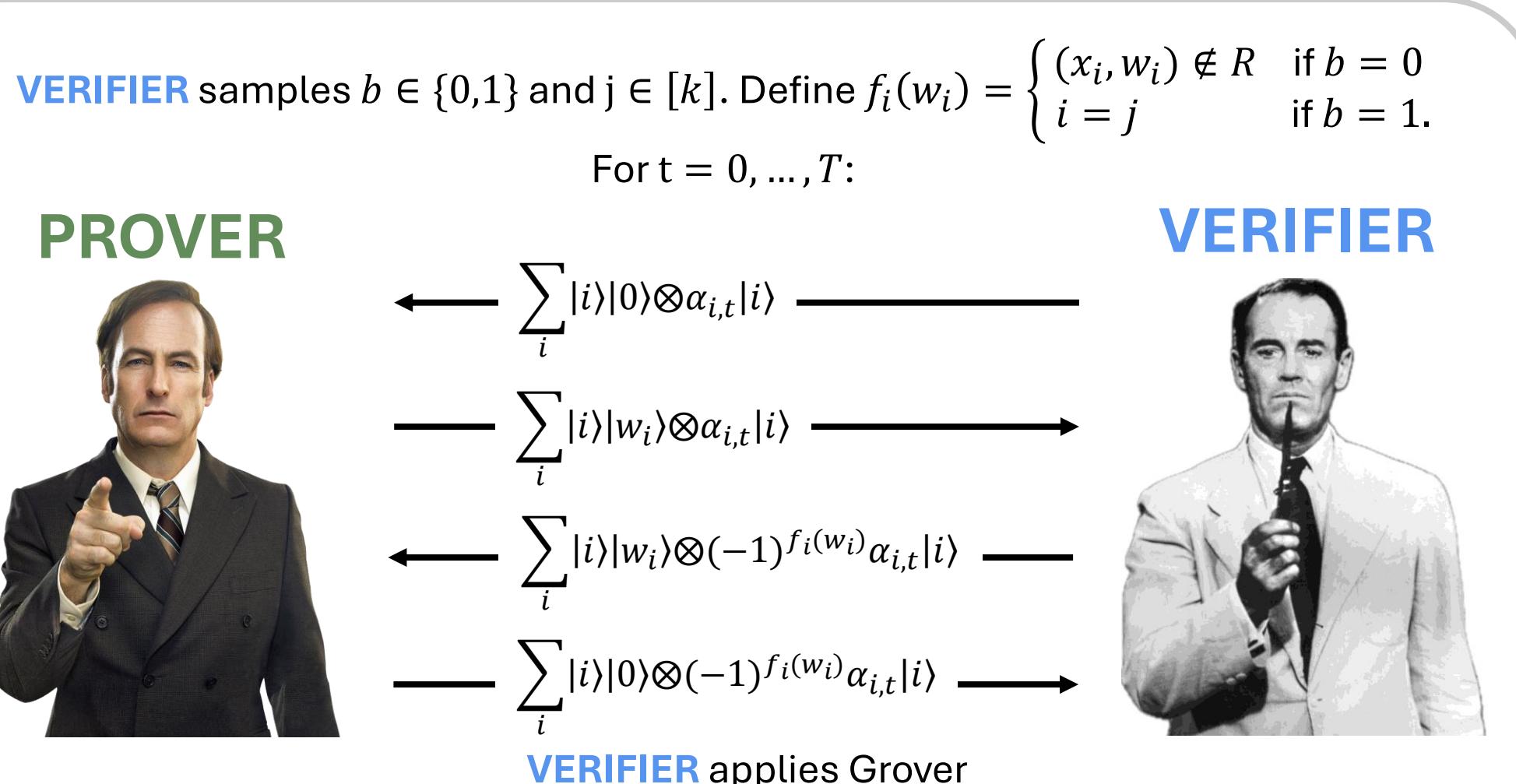
Theorem 1.3. Let R be any NP relation. If R has a ρ -compressing quantum batch proof, then R has a quantum interactive proof with a non-uniform honest prover that satisfies quantum statistical witness indistinguishability against honest verifiers, with witness indistinguishability error $\sqrt{\rho}$.

Proof Sketch of Theorem 1.3. Proof closely mirrors proof that batch proofs imply **SWI** [BKP+24] but uses quantum distributional stability [Drucker 2012]. The idea is that compression loses information about many witnesses, so the prover for **QSWI** can hide their witness among many “dummy” witnesses, still proving the desired instance to the verifier without revealing their witness. Note that, for this to work, the **QSWI** prover requires non-uniform advice.

OPEN: NP = QSWI?

Theorem 1.3. suggests a path to proving $\text{NP} \subseteq \text{QSWI}$: prove every **NP** instance has quantum batch proofs.

A distributed Grover Search for invalid witnesses almost works:



Unfortunately, this fails if the prover entangles private registers with the message registers. Please let us know if you have ideas!

OPEN: Perfect Completeness?

[Kobayashi 2008] was able to prove completeness errors can be generically eliminated in any **QZK** protocol, but the techniques used do not preserve prover efficiency.

Can every **QSWI** proof be made to have perfect completeness?

Solving the following toy problem would imply yes:

Problem 6.1. Construct an efficient quantum circuit that uses polynomially many copies of $\sqrt{p}|0\rangle + \sqrt{1-p}|1\rangle$ to exactly produce the state $\sqrt{1 - \frac{c}{p}}|0\rangle + \sqrt{\frac{c}{p}}|1\rangle$ for some known efficiently computable constant c and unknown p .

References

[BKP+24] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron D Rothblum, and Prashant Nalini Vasudevan. Batch proofs are statistically hiding. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pages 435–443, 2024.

[Drucker 2012] Andrew Drucker. New limits to classical and quantum instance compression. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 609–618. IEEE, 2012.

[Kobayashi 2008] Hirotada Kobayashi. General properties of quantum zero-knowledge proofs. In Theory of Cryptography: Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19–21, 2008. Proceedings 5, pages 107–124. Springer, 2008.

[Kitaev Watrous 2000] Alexei Kitaev and John Watrous. Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 608–617, 2000.

[Marriott Watrous 2005] Chris Marriott and John Watrous. Quantum arthur-merlin games. computational complexity, 14(2):122–152, 2005.