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Transcript

PEﬂ%‘JVESR QSWI by default requires transcripts for different valid
PSOQ(ER Mgﬁiﬁ‘SE VZRIJ.LER witness w for Is x ayes- witnesses to be indistinguishable no matter what the verifier
| . . . .
WIS LIS instance x of instance? does. It will be easier to reason about honest verifiers:
NP problem L

Honest-Verifier (hvQSWI): The transcripts for different valid
witnesses are only guaranteed to be indistinguishable for
some specific verifier following a fixed protocol.

)
£ The opposite is Malicious-Verifier.
|_
Quantum Transcript if w = w, Quantum Public-Coin (pubQSWI): All verifier messages are uniformly
Computationally ~ Computationally random classical strings.
Efficient Transcriptifw = w, Efficient

The opposite is Private-Coin.

Definition (QSWI). An NP problem is in QSWI if there exists a quantum interactive
proof with an efficient quantum prover that takes a witness w as input, such that for all By definition, all are in NP, and pubQSWI S QSWI € hvQSWI,
instances x, for any two valid witnesses w, and w,, the verifier’s view after each round and pubSWI € SWI € hvSWI € hvQSWI.

\ 4
\ / Qnteraction when w = wj is statistically close to its view when w = w,. / k

/ Simple 3-Message Public-Coin Protocols Suffice \

Proof Sketch of Theorem 1.1.

Theorem 1.1. Any problem in hvQSWI has a (Proofs closely mirror similar results for QZK [Kobayashi 2008], but with efficient provers and WI error)

proof that satisfies quantum statistical witness
indistinguishability against malicious verifiers.
In particular: pubQSWI = QSWI = hvQSWI.

Verifier Verifier WI Error Technique
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, . : .. Lemma4.1. Private Honest m 1—¢ € 5 — Private  Honest 3 1—— — me IP = QIP(3) [Kitaev Watrous 2000
Moreover, the witness indistinguishability error . Wi 2 1 32(M + 1)2 wi QP =QIP(E) | !
in the resulting protocol is polynomially related
. .. »
to that in the original protocol. Lemma 4.2. Private Honest 3 1—e. & EWI — Private  Honest 3 (1 — %) &P DEWI p parallel repetitions
No analogous results are known for SWI.
Lemma 4.3. Private Honest m 2/3 1/3 EWTI — Private  Honest 3 1-27P 27P negl(n) fiil:r?rr:;ilffzzgznz
Corollary 1.2. swic Qswi ; ;
: : Ec 1 /e Verifier message can be single
Note: Corollary 1.2 does not follow from Lemmad.4. pEupEEy Honest | 3 l-é& & éwr  — Public  Honest 3 1= 2 Ty fwr random bit [Marriott Watrous 2005]
definitions. A priori, malicious quantum
verifiers might have had new quantum Lemma 4.5. Public Honest 3 1—¢e. & EWI — Public Malicious 3 1— & Es EWT Careful simulation

strategies for distinguishing witnesses.

\ Theorem 4.6. Private Honest m 2/3 1/3 EWTI —  Public Malicious 3 1-27P 27F negl(n) Lemmas 4.1-4.5 /

/ Quantum Batch Proofs Imply QSWi \

Definition (Quantum Batch Proof). For any NP relation R, a quantum batch proof for R
Is a quantum interactive proof for the relation
R®* = {((x1, %3, ..., xp), W1, W3, ...,wy)) : Vi € [K], (x;, w;) € R}.

If the total communication in the interaction is a p fraction of the communication required for
the prover to send all witnesses to the verifier, then we say the batch proof is p-compressing.

witnesses (Wq, Wy, ..., W)
forinstances (x4, X3, ..., Xx)

(NP problem R
' *

PROVER knows PROVER

Are (x4, X9, ..., X})
all yes-instances?

Theorem 1.3. Let R be any NP relation. If R has a p-compressing quantum batch proof, then R
has a quantum interactive proof with a non-uniform honest prover that satisfies quantum statistical
witness indistinguishability against honest verifiers, with witness indistinguishability error \/p.

N
PROVER is not v~ . .
required to hide Transcript is Proof Sketch of Theorem 1.3. Proof closely mirrors proof that batch proofs imply SWI [BKP+24]
witness identities Con?ujt';?onr:au ShOft?f than Con?ujtr;tt?onr:all but uses quantum distributional stability [Drucker 2012]. The idea is that compression loses information
UnFl)oounded Y sending all Eﬁ‘ficient y about many witnesses, so the prover for QSWI can hide their witness among many “dummy” witnesses,
witnesses

still proving the desired instance to the verifier without revealing their witness. Note that, for this to work,

\ the QSWI prover requires non-uniform advice. /

/ OPEN: NP = QSWI? \ OPEN: Perfect Completeness?

Theorem 1.3. suggests a path to proving NP € QSWI:

prove every NP instance has quantum batch proofs. [Kobayashi 2008] was able to prove completeness errors can be generically eliminated in any QZK protocol,

but the techniques used do not preserve prover efficiency.
A distributed Grover Search for invalid witnesses almost works:

Can every QSWI proof be made to have perfect completeness?
(Xi,Wi) ¢ R ifb=0

N fh =1 Solving the following toy problem would imply yes:
[ =] ifb = 1.

VERIFIER samples b € {0,1} and j € [k]. Define f;(w;) = {
Fort=20,..,T:

PROVER VERIFIER rentauan
‘ to exactly produce the state /1 ~3 |0) + \/; |1) for some known efficiently computable constant ¢ and unknown p.
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Problem 6.1. Construct an efficient quantum circuit that uses polynomially many copies of \/p|0) + /1 — p|1)
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Unfortunately, this fails if the prover entangles private registers

K with the message registers. Please let us know if you have ideas! / \[Marriott Watrous 2005] Chris Marriott and John Watrous. Quantum arthur—-merlin games. computational complexity,14(2):122-152, 2005./
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