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Lemma 4.1. Private Honest 𝑚 1 − 𝜀c 𝜀s 𝜀WI → Private Honest 3 1 −
𝜀c
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32 𝑀 + 1 2
𝑚𝜀WI QIP = QIP(3) [Kitaev Watrous 2000]

Lemma 4.2. Private Honest 3 1 − 𝜀c 𝜀s 𝜀WI → Private Honest 3 1 −
𝜀c

2

𝑝

𝜀𝑠
𝑝 𝑝𝜀WI 𝑝 parallel repetitions

Lemma 4.3. Private Honest 𝑚 2/3 1/3 𝜀WI → Private Honest 3 1 − 2−𝑝 2−𝑝 negl(n)
Sequential repetition 
+ Lemmas 4.1 and 4.2

Lemma 4.4. Private Honest 3 1 − 𝜀c 𝜀s 𝜀WI → Public Honest 3 1 −
𝜀c
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𝜀WI

Verifier message can be single 
random bit [Marriott Watrous 2005]

Lemma 4.5. Public Honest 3 1 − 𝜀c 𝜀s 𝜀WI → Public Malicious 3 1 − 𝜀c 𝜀s 𝜀WI Careful simulation

Theorem 4.6. Private Honest 𝑚 2/3 1/3 𝜀WI → Public Malicious 3 1 − 2−𝑝 2−𝑝 negl(n) Lemmas 4.1 - 4.5
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Definition (QSWI). An NP problem is in QSWI if there exists a quantum interactive 
proof with an efficient quantum prover that takes a witness 𝒘 as input, such that for all 
instances 𝒙, for any two valid witnesses 𝒘𝟏 and 𝒘𝟐, the verifier’s view after each round 
of interaction when 𝒘 = 𝒘𝟏 is statistically close to its view when 𝒘 = 𝒘𝟐.

QSWI by default requires transcripts for different valid 
witnesses to be indistinguishable no matter what the verifier 
does. It will be easier to reason about honest verifiers:

Honest-Verifier (hvQSWI): The transcripts for different valid 
witnesses are only guaranteed to be indistinguishable for 
some specific verifier following a fixed protocol.

The opposite is Malicious-Verifier.

Public-Coin (pubQSWI): All verifier messages are uniformly 
random classical strings.

The opposite is Private-Coin.

By definition, all are in NP, and pubQSWI ⊆ QSWI ⊆ hvQSWI, 
and pubSWI ⊆ SWI ⊆ hvSWI ⊆ hvQSWI.
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Theorem 1.1. Any problem in hvQSWI has a 
3-message, public-coin quantum interactive 
proof that satisfies quantum statistical witness 
indistinguishability against malicious verifiers. 
In particular: pubQSWI = QSWI = hvQSWI. 
Moreover, the witness indistinguishability error 
in the resulting protocol is polynomially related 
to that in the original protocol.

Corollary 1.2. SWI ⊆ QSWI

Note: Corollary 1.2 does not follow from 
definitions. A priori, malicious quantum 
verifiers might have had new quantum 
strategies for distinguishing witnesses.

Proof Sketch of Theorem 1.1. 
(Proofs closely mirror similar results for QZK [Kobayashi 2008], but with efficient provers and WI error)

No analogous results are known for SWI.

Simple 3-Message Public-Coin Protocols Suffice

Quantum Batch Proofs Imply QSWI

OPEN: Perfect Completeness? 

[Kobayashi 2008] was able to prove completeness errors can be generically eliminated in any QZK protocol, 
but the techniques used do not preserve prover efficiency.

Can every QSWI proof be made to have perfect completeness? 

Solving the following toy problem would imply yes:

Problem 6.1. Construct an efficient quantum circuit that uses polynomially many copies of 𝑝ȁ ۧ0 + 1 − 𝑝ȁ ۧ1  

to exactly produce the state 1 −
𝑐

𝑝
ȁ ۧ0 +

𝑐

𝑝
ȁ ۧ1  for some known efficiently computable constant 𝑐 and unknown 𝑝.
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Theorem 1.3. Let 𝑅 be any NP relation. If 𝑹 has a 𝝆-compressing quantum batch proof, then 𝑹 
has a quantum interactive proof with a non-uniform honest prover that satisfies quantum statistical 
witness indistinguishability against honest verifiers, with witness indistinguishability error 𝝆.

Definition (Quantum Batch Proof). For any NP relation 𝑹, a quantum batch proof for 𝑹 
is a quantum interactive proof for the relation 

𝑹⨂𝒌 ≔ {( 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌 , 𝒘𝟏, 𝒘𝟐, … , 𝒘𝒌 ) ∶  ∀𝒊 ∈ 𝒌 , (𝒙𝒊, 𝒘𝒊) ∈ 𝑹}. 
If the total communication in the interaction is a 𝝆 fraction of the communication required for 
the prover to send all witnesses to the verifier, then we say the batch proof is 𝝆-compressing.

Proof Sketch of Theorem 1.3. Proof closely mirrors proof that batch proofs imply SWI [BKP+24] 
but uses quantum distributional stability [Drucker 2012]. The idea is that compression loses information 
about many witnesses, so the prover for QSWI can hide their witness among many “dummy” witnesses, 
still proving the desired instance to the verifier without revealing their witness. Note that, for this to work, 
the QSWI prover requires non-uniform advice.
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OPEN: NP = QSWI? 

Theorem 1.3. suggests a path to proving NP ⊆ QSWI: 
prove every NP instance has quantum batch proofs.

A distributed Grover Search for invalid witnesses almost works:
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VERIFIER applies Grover 
Diffusion and repeats

Unfortunately, this fails if the prover entangles private registers 
with the message registers.  Please let us know if you have ideas!

VERIFIER then measures last register to get 𝑖∗. 
If 𝑏 = 0, accept if 𝑥𝑖∗ , 𝑤𝑖∗ ∈ 𝑅. If 𝑏 = 1, accept if 𝑖∗ = 𝑗. Otherwise, reject.

VERIFIER samples 𝑏 ∈ {0,1} and j ∈ 𝑘 . Define 𝑓𝑖 𝑤𝑖 = ቊ
(𝑥𝑖 , 𝑤𝑖) ∉ 𝑅 if 𝑏 = 0
 𝑖 = 𝑗 if 𝑏 = 1.

For t = 0, … , 𝑇:
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